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Abstract
Using supersymmetric quantum mechanics we construct the quasi-exactly
solvable (QES) potentials with arbitrary two known eigenstates. The QES
potential and the wavefunctions of the two energy levels are expressed by some
generating function the properties of which determine the state numbers of
these levels. Choosing different generating functions we present a few explicit
examples of the QES potentials.

PACS numbers: 03.65.Ge, 11.30.Pb

1. Introduction

From the early days of quantum mechanics there has been continual interest in the models for
which the corresponding Schrödinger equation can be solved exactly. The number of totally
exactly solvable potentials is rather limited. Therefore, recently much attention has been given
to the quasi-exactly solvable (QES) potentials for which a finite number of energy levels and
corresponding wavefunctions are known in explicit form.

The first examples of QES potentials were given in [1–4]. Subsequently several methods
were worked out for generating QES potentials and as a result many QES potentials were
established [5–13]. One of the methods is the generation of new QES potentials using
supersymmetric (SUSY) quantum mechanics [13–15] (for a review of SUSY quantum
mechanics see [16]). The idea of the SUSY method for constructing QES potentials is the
following. Starting from some initial QES potential with n + 1 known eigenstates and using
the properties of the unbroken SUSY one obtains the SUSY partner potential which is a new
QES potential with the n known eigenstates.

In our recent paper [17] we proposed a new SUSY method for generating QES potentials
with two known eigenstates. This method, in contrast to the one in [13–15], does not require
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knowledge of the initial QES potential in order to generate a new QES one. General expressions
for the superpotential, the potential energy and two wavefunctions which correspond to two
energy levels were obtained. Within the frame of this method we have obtained QES potentials
for which we have found in the explicit form the energy levels and wavefunctions of the
ground and first excited states. One should mention here also [18] in which the general
expression for the QES potentials with two known eigenstates was obtained without resorting
to SUSY quantum mechanics (see also a very recent paper by Dolya and Zaslavskii [19]).
Although this method is direct and simpler than the SUSY approach the latter still has some
advantages: namely, the SUSY method developed in [17] can be extended for the generation
of QES potentials with three known eigenstates [20] and conditionally exactly solvable (CES)
potentials [21]. The CES potentials are those for which the eigenvalue problem for the
corresponding Hamiltonian is exactly solvable only when the potential parameters obey certain
conditions [22]. About using SUSY quantum mechanics for the construction of the CES
potentials see [23–25]. It is also worth mentioning the very recent [26] in which the authors
established the connection between the SUSY approach for constructing QES potentials with
two known eigenstates [17, 21] and the Turbiner approach [5].

Note that the general expressions for QES potential and corresponding wavefunctions
derived by Dolya and Zaslavskii in [19] without resorting to SUSY quantum mechanics are
the same as those obtained in [17,21] using the SUSY method. In [17,21] we have used these
general expressions for constructing QES potentials with the ground and first excited states.
A new interesting result obtained by Dolya and Zaslavskii is that they have shown that it is
possible to obtain not only the ground and first excited states but any pair of the energy levels
and the corresponding wavefunctions.

The aim of this paper is to extend the SUSY method proposed in our papers [17, 21]
for constructing QES potentials with arbitrary two known eigenstates. In [17, 21] we used
nonsingular superpotentials and obtained QES potentials with explicitly known ground and
first excited states. In this paper using singular superpotentials we obtain nonsingular
QES potentials for which we know in explicit form any pair of the energy levels and the
corresponding wavefunctions. Of course, the idea of using singular superpotential in SUSY
quantum mechanics is well known (see [16] for a review). Nevertheless, new in this paper
is that in the frame of SUSY quantum mechanics with singular superpotentials we derive
nonsingular QES potentials with arbitrary two known eigenstates.

2. SUSY quantum mechanics and QES problems

In the Witten model of SUSY quantum mechanics the SUSY partner Hamiltonians H± read

H± = B∓B± = −1

2

d2

dx2
+ V±(x) (1)

where

B± = 1√
2

(
∓ d

dx
+W(x)

)
(2)

V±(x) = 1
2 (W

2(x)±W ′(x)) W ′(x) = dW (x)

dx
(3)

and W(x) is referred to as a superpotential. In this paper we consider the systems on the full
real line −∞ < x < ∞.

We study the eigenvalue problem for the Hamiltonian H−

B+B−ψ−
E (x) = Eψ−

E (x). (4)
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Applying to the left- and right-hand sides of this equation the operator B− we obtain the
equation for the eigenvalue problem of the Hamiltonian H+

B−B+(B−ψ−
E (x)) = E(B−ψ−

E (x)) (5)

from which it follows that

ψ+
E(x) = CB−ψ−

E (x) (6)

is the solution of the eigenvalue problem for the HamiltonianH+ with energyE, andC = 1/
√
E

is the normalization constant if the wavefunctionψ+(x) is square integrable. It is also possible
that ψ+(x) does not satisfy the necessary conditions and does not belong to the eigenfunctions
of the Hamiltonian H+. Such a situation occurs for singular superpotentials (see review [16]).
Nevertheless, the function ψ+(x) is the solution of (5). Applying to (6) the operator B+ we
obtain

ψ−
E (x) = CB+ψ+

E(x). (7)

Now let us analyse the eigenvalue problem for the Hamiltonian H−. Due to the
factorization of the Hamiltonian the wavefunction of the zero-energy state satisfiesB−ψ−

0 = 0
and reads

ψ−
0 (x) = C−

0 exp

(
−

∫
W(x) dx

)
(8)

where C−
0 is the normalization constant. In order to satisfy the condition of the square

integrability of the wavefunction (8) we put

sign(W(±∞)) = ±1. (9)

We are interested in the potential energy V−(x) free of singularities. The simplest way to
satisfy this condition is to consider a superpotentialW(x) which is free of singularities. Then
ψ−

0 (x) corresponds to the zero-energy ground state of the HamiltonianH−. Just this case was
considered in our paper [17]. But it is also possible to get a nonsingular potential energy V−(x)
using a singular superpotential. Let us assume thatW(x) has the simple poles at the points xk
with the following behaviour in the vicinity of xk:

W(x) = A−1

x − xk
+ A0 + A1(x − xk) + O((x − xk)

2). (10)

Then V−(x) in the vicinity of xk reads

2V−(x) = A−1(A−1 + 1)

(x − xk)2
+ 2

A−1A0

x − xk
+ 2A−1A1 + A2

0 − A1 + O(x − xk). (11)

The first case A−1 = 0 leads to the nonsingularW(x) and V−(x). The second case A−1 = −1
andA0 = 0 gives the nonsingular potential energy V−(x) with a singular superpotential. Here
it is worth stressing that the SUSY partner potential energy in this case is singular with the
following behaviour in the vicinity of xk: 2V+(x) = 2/(x − xk)

2 − A1 + O(x − xk).
Let us analyse the second case. Using equation (8) we obtain the behaviour of the

wavefunction in the vicinity of the point xk as follows: ψ−
0 (x) ∼ |x−xk|(1−A1(x−xk)2/2).

As we see, dψ−
0 (x)/dx is a discontinuous function at the points xk . In order to obtain the

wavefunction with continuous derivative we use the simple fact that if ψ−
0 (x) in the domain

xk < x < xk+1 satisfies the Schrödinger equation then the function with the opposite sign
−ψ−

0 (x) satisfies the same equation too. Thus, we can change the sign of wavefunction in the
domains (xk, xk+1) in such a way that ψ−

0 (x) and its derivative dψ−
0 (x)/dx will be continuous

functions. In fact this means that it is necessary to make the substitution |f | → f . Then the
behaviour of the wavefunction in the vicinity of xk is

ψ−
0 (x) ∼ (x − xk)(1 − A1(x − xk)

2/2) (12)
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and the wavefunction has zeros at the pointsxk . Thus, the zero-energy wavefunction hasnnodes
(n is the number of poles of the superpotential) and corresponds to the nth excited state. Note
that in this case the ground state energy is less than zero. Choosing different superpotentials
W(x) we can easily construct different QES potentials with one known eigenstate.

In contrast to this the construction of the QES potentials with two known eigenstates is
not a trivial problem. One state of the HamiltonianH− with zero energy is known and is given
by (8). In order to obtain one more state of H− we use the following well known procedure
exploited in SUSY quantum mechanics. Let us consider the SUSY partner of H−, i.e. the
Hamiltonian H+. If we calculate some state of H+ we immediately find a new excited state
of H− using transformation (7). In order to calculate some state of H+ let us rewrite it in the
following form:

H+ = H
(1)
− + ε = B+

1B
−
1 + ε ε > 0 (13)

which leads to the relation between the potential energies

V+(x) = V
(1)
− (x) + ε (14)

and superpotentials

W 2(x) +W ′(x) = W 2
1 (x)−W ′

1(x) + 2ε (15)

where ε is the energy of the state of H+ since we supposed that H(1)
− similarly to H− has the

zero-energy state, and B±
1 and V (1)− (x) are given by (2) and (3) with the new superpotential

W1(x).
As we see from (13) the wavefunction of H+ with energy E = ε is also the zero-energy

wavefunction of H(1)
− and satisfies B−

1 ψ
+
ε (x) = 0. The solution of this equation is

ψ+
ε (x) = C+ exp

(
−

∫
W1(x) dx

)
. (16)

Using (7) we obtain the wavefunction of the excited state with energy level E = ε for the
Hamiltonian H−

ψ−
ε (x) = C− W+(x) exp

(
−

∫
W1(x) dx

)
(17)

where we have introduced the notationW+(x) = W1(x) +W(x). In order to satisfy the square
integrability of this function at infinity we impose the superpotential W1(x) with the same
condition as W(x) (9). Then W+(x) satisfies the same condition (9) too.

In order to obtain the explicit expression for the wavefunction ψ−
0 (x) with zero energy

and the wavefunction ψ−
ε (x) with energy ε given by (8) and (17) it is necessary to obtain the

explicit expression for superpotentialsW(x) andW1(x). This is the subject of the next section.

3. Solutions for superpotentials and construction of nonsingular QES potentials

The superpotentials W(x) and W1(x) satisfy equation (15). Note that (15) is the Riccati
equation which cannot be solved exactly with respect to W1(x) for a given W(x) and vice
versa. But we can find such a pair of W(x) and W1(x) that satisfies equation (15). For this
purpose let us rewrite equation (15) in the following form:

W ′
+(x) = W−(x)W+(x) + 2ε (18)

where

W+(x) = W1(x) +W(x) (19)

W−(x) = W1(x)−W(x). (20)
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This new equation can be easily solved with respect toW−(x) for a givenW+(x) and vice
versa. In this paper we use the solution of equation (18) with respect to W−(x)

W−(x) = (W ′
+(x)− 2ε)/W+(x). (21)

Then from (19) to (21) we obtain the pair of W(x), W1(x) that satisfies equation (15):

W(x) = 1
2 (W+(x)− (W ′

+(x)− 2ε)/W+(x)) (22)

W1(x) = 1
2 (W+(x) + (W ′

+(x)− 2ε)/W+(x)) (23)

whereW+(x) is some function of x which generates the superpotentialsW(x) andW1(x). Let
us stress that W(x), W1(x) and W+(x) must satisfy condition (9). It is necessary to note that
the general solutions (22), (23) of equation (15) was obtained earlier in [27] in the context of
paraSUSY quantum mechanics.

In our earlier paper [17] we considered only the superpotentials free of singularitiesW(x)
and W1(x). To satisfy a nonsingularity of the superpotentials we considered a continuous
functionW+(x) that has only one simple zero. BecauseW+(x)was considered as a continuous
function which satisfies condition (9) the function W+(x) must have at least one zero. Then,
as we see from (21) to (23), W−(x), W(x) and W1(x) have poles. In order to construct
the superpotentials free of singularities we supposed that W+(x) has only one simple zero at
x = x0. In this case the pole of W−(x) and W(x), W1(x) at x = x0 can be cancelled by
choosing ε = W ′

+(x0)/2.
Now let us consider more general cases of the functionW+(x) which leads to nonsingular

QES potential energy V−(x).

Case 1. Suppose that W+(x) has simple zeros at the points xk , k = 1, . . . , n

W+(x) = W ′
+(xk)(x − xk) + 1

2W
′′
+ (xk)(x − xk)

2 + O((x − xk)
3). (24)

The zeros of the functionW+(x) lead to the poles of the functionW−(x) and the superpotential
W(x) with the following behaviour in the vicinity of xk:

W(x) = −
(

1

2
− ε

W ′
+(xk)

)
1

x − xk
− 1

2

W ′′(xk)
W ′(xk)

(
1

2
+

ε

W ′
+(xk)

)
+ O(x − xk). (25)

The behaviour of the superpotentialW1(x) in the vicinity of xk is similar toW(x) only with the
opposite sign. It is worth comparing the superpotential (25) with (10): A−1 = ε/W ′

+(xk)−1/2
and A0 = −W ′′(xk)(ε/W ′

+(xk) + 1/2)/2W ′(xk). This superpotential leads to the following
behaviour of the potential energy in the vicinity of xk:

2V−(x) =
[(

ε

W ′
+(xk)

)2

− 1

4

] (
1

(x − xk)2
− W ′′(xk)
W ′(xk)

1

(x − xk)

)
+ O(const). (26)

Thus, in the case

W ′
+(xk) = ±2ε (27)

the potential energy V−(x) is free of singularities. It is convenient to divide the set of xk into
two subsets x+

k (k = 1, . . . , n+) and x−
k (k = 1, . . . , n−) for which W ′

+(x
+
k ) = 2ε > 0 and

W ′
+(x

−
k ) = −2ε < 0. We suppose in this paper that ε > 0. Because of W ′

+(x
+
k ) = 2ε the

singularity at the points x+
k is cancelled and W(x), W1(x) have singularities only at the points

x−
k :

W(x) = −1

x − x−
k

+ O(x − x−
k ) (28)

W1(x) = 1

x − x−
k

+ O(x − x−
k ). (29)
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Substituting W(x) into (8) and using the result of the previous section (see equation (12))
we see that the wavefunction ψ−

0 (x) with zero energy has n− zeros at the points x−
k , namely

ψ−
0 ∼ (x − x−

k ) in the vicinity of x−
k . Substituting W+(x) given by (24) and W1(x) given

by (29) into (17) we obtain that the wavefunction ψ−
ε (x) with the energy ε has n+ zeros at the

points x+
k : ψ−

ε (x) ∼ (x−x+
k ). WhenW+(x) is the continuous function satisfying condition (9)

then n+ = n− + 1. Thus, in this case ψ−
0 (x) and ψ−

ε (x) correspond to n−th and (n− + 1)th
excited states respectively.

Case 2. Now let us assume that the function W+(x) in addition to the zeros has the simple
poles at the points x0

k with the behaviour in the vicinity of x0
k as follows:

W+(x) = G−1

x − x0
k

+G0 + O(x − x0
k ). (30)

Then

W(x) = 1

2

G−1 + 1

x − x0
k

+
1

2

G0

G−1
(G−1 − 1) + O(x − x0

k ) (31)

W1(x) = 1

2

G−1 − 1

x − x0
k

+
1

2

G0

G−1
(G−1 + 1) + O(x − x0

k ). (32)

Here we drop the terms of order (x − x0
k ). Note that G0 and G−1 can depend on k. For

the sake of simplicity we omit this dependence. Comparing superpotential (31) and (10) we
conclude that the superpotential W(x) (31) gives a nonsingular potential energy for the case
2a: G−1 = −1 and G0 is an arbitrary constant, and for the case 2b: G−1 = −3 and G0 = 0.

Case 2a. For the case G−1 = −1 in the vicinity of x0
k we have nonsingular superpotential

W(x) and singular W1(x)

W(x) = G0 + O(x − x0
k ) (33)

W1(x) = −1

x − x0
k

+ O(x − x0
k ). (34)

The wavefunctions ψ−
0 (x) and ψ−

ε (x) calculated with these superpotentials do not have zeros
at the points x0

k , which we denote in this case as ak , k = 1, . . . , n0. Nevertheless, now W+(x)

in addition to n = n+ + n− zeros at points x+
k and x−

k has n0 poles at the points x0
k and thus is

not a continuous function. As a result, in this case we have n+ = n− + n0 + 1. Using the result
obtained in case 1 we see that ψ−

0 (x) has zeros at x−
k and corresponds to the n−th excited state

and ψ−
ε has zeros at x+

k and corresponds to the (n− + n0 + 1)th excited state.

Case 2b. The caseG−1 = −3 andG0 = 0 leads to the following behaviour of superpotentials
in the vicinity of x0

k :

W(x) = −1

x − x0
k

+ O(x − x0
k ) (35)

W1(x) = −2

x − x0
k

+ O(x − x0
k ). (36)

The wavefunctions ψ−
0 (x) and ψ−

ε (x) calculated with these superpotentials have common
zeros at the points x0

k , which we denote in this case as bk , k = 1, . . . , m0. Thus, when in
addition to poles the function W+(x) has n = n+ + n− zeros at the points x+

k and x−
k the
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wavefunction ψ−
0 (x) corresponds to the (n− +m0)th excited state and ψ−

ε (x) corresponds to
the (n− + 2m0 + 1)th excited state.

Let us consider the general case which combines the cases 1, 2a and 2b. The function
W+(x) has n− zeros with negative derivatives at the points x−

k (k = 1, . . . , n−), n0 poles
at the points ak (k = 1, . . . , n0) with asymptotic behaviour in the vicinity of these points
−1/(x − ak) + const and m0 poles at the points bk (k = 1, . . . , m0) with the asymptotic
behaviour −3/(x − bk). The number of zeros of the functionW+(x) with a positive derivative
at the points x+

k is the following: n+ = n− + n0 + m0 + 1. The wavefunction ψ−
0 (x) has

(n− +m0) nodes at the points x−
k and bk and thus corresponds to the (n− +m0)th excited state.

The wavefunction ψ−
ε (x) has n+ +m0 = n− + n0 + 2m0 + 1 nodes at the points x+

k and bk and
thus corresponds to the (n− + n0 + 2m0 + 1)th excited state.

Thus, the considered cases 1, 2a, 2b and the combined general case lead to the nonsingular
QES potential energy V−(x) given by (3), where the superpotentialW(x) is expressed over the
functionW+(x) by equation (22). The zero-energy wavefunctionψ−

0 (x) and the wavefunction
ψ−
ε (x)with energy ε are given by (8) and (17), respectively. Note that in the case of nonsingular

superpotentialW(x) the zero-energy wavefunction corresponds to the ground state, but in the
case of singular superpotential the energy of the ground state is less than zero and the zero-
energy wavefunction corresponds to an excited state.

To conclude this section let us discuss the second possibility for construction of the QES
potentials with two known eigenstates: namely, use of the solution of equation (18) with
respect to W+(x) [21]. We found that

W−(x) = −φ
′′(x)
φ′(x)

W+(x) = 2ε
φ(x)

φ′(x)
(37)

satisfies equation (18), whereφ(x) is new generating function. UsingW+ andW− given by (37)
we obtained the QES potential and two wavefunctions in terms of φ(x). Choosing generating
functions φ(x) with one zero we obtained QES potentials with explicitly known ground and
first excited states. Note that the basic equations derived by Dolya and Zaslavskii in [19]
without resorting to SUSY quantum mechanics are the same as earlier obtained in [21] using
the SUSY method (in [19] φ(x) is denoted as ξ(x)). A new result obtained by Dolya and
Zaslavskii is that they have shown how one can obtain not only the ground and first excited
states but any pair of states using generating function φ(x) and derivative φ′(x) with zeros
and poles. In this paper we work with generating function W+(x) which is related with φ(x)
by (37). As we see, zeros and poles of φ(x) (or ξ(x)) lead the zeros of W+(x) and zeros of
φ′(x) (or ξ ′(x)) lead to the poles of W+(x).

4. Examples of QES potentials

Note that all expressions depend on the function W+(x). We may choose various functions
W+(x) and obtain as a result various QES potentials. Note also that when the function
W+(x) generates the potential energy V−(x) then W+(x/a)/a generates the potential energy
V−(x/a)/a2. This scaling is useful for comparing, in principle, the same potential energies
written in different forms as a result of different measurement units.

To illustrate the above-described method we give two explicit examples of the nonsingular
QES potentials.

Example 1. Let us consider a continuous function W+(x) which corresponds to case 1:

W+(x) = αx
x2 − 1

x2 + 1
(38)
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where α > 0. This function has three zeros at the points 0,±1. The denominator is written
in order to satisfy condition (27), namely W ′

+(0) = −α, W ′
+(±1) = α. Note that n+ = 2,

n− = 1 and thus we have QES potential with explicitly known first and second excited states.
From the condition of nonsingularity of the potential energy it follows that ε = α/2. Then
using (22) and (23) we obtain for the superpotentials

W(x) = α

2
x + (1 − α)

x

x2 + 1
− 1

x
(39)

W1(x) = α

2
x − (1 + α)

x

x2 + 1
+

1

x
. (40)

The superpotential W(x) gives the following QES potential:

2V−(x) = α2

4
x2 − (1 − α)(3 − α)

1

(x2 + 1)2
− 2α(1 − α)

1

x2 + 1
+ α(1 − α)− 3

2
α. (41)

The zero-energy wavefunction (8) and wavefunction with energy ε = α/2 (17) read

ψ−
0 (x) = C0x(x

2 + 1)(α−1)/2 exp
(
−α

4
x2

)
(42)

ψ−
ε (x) = Cε(x

2 − 1)(x2 + 1)(α−1)/2 exp
(
−α

4
x2

)
. (43)

As we see, ψ−
0 (x) has one node and thus really corresponds to the first excited state; ψ−

ε (x)

has two nodes and corresponds to the second excited state.
Note that QES potential (41) has similar structure as the potential studied in [19] but

in fact it is another potential. In our case we have the QES potential with explicitly known
first and second eigenstates, whereas for the QES potential studied in [19] the ground and
second excited states are explicitly known. It is interesting to note also that in our case QES
potential (41) at the value of parameter α = 1 becomes exactly solvable and corresponds to
the harmonic oscillator.

Example 2. Let us consider a more complicated example for which the function W+(x) has
two poles and three zeros:

W+(x) = α

x2 − 1
x(x2 − a2)(x2 + b2). (44)

In order to have the asymptotic behaviour of the function W+(x) in the vicinity of the points
x = ±1 which corresponds to the case 2a, namely −1/(x− 1) and −1/(x + 1), we choose the
parameter α as follows:

α = 2

(a2 − 1)(b2 + 1)
. (45)

This value of α gives a nonsingular behaviour of the potential energy in the vicinity of x = ±1.
In order to have the same derivatives in the points of zeros of the function W+(x), namely
W ′

+(0) = W ′
+(±a), we put the following value for parameter b:

b2 = 2a2

(a2 − 3)
(46)

from which it follows that a2 > 3. Then, choosing

2ε = W ′
+(0) = W ′

+(±a) = 4a4

3(a2 − 1)2
(47)
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we obtain the superpotentials

W(x) = x

6

(
−2(a4 − 6a2 + 3)

(a2 − 1)2
+

2(a2 − 3)x2

(a2 − 1)2
− 15(a2 − 3)

(a2 − 3)x2 + 2a2

)
(48)

W1(x) = x

6

(
−2(a4 − 6a2 + 3)

(a2 − 1)2
+

2(a2 − 3)x2

(a2 − 1)2
+

15(a2 − 3)

(a2 − 3)x2 + 2a2
− 12

x2 − 1

)
(49)

and the nonsingular potential energy

2V−(x) = x2

36

(
−2(a4 − 6a2 + 3)

(a2 − 1)2
+

2(a2 − 3)x2

(a2 − 1)2
− 15(a2 − 3)

(a2 − 3)x2 + 2a2

)2

+
1

6

(
2(a4 − 6a2 + 3)

(a2 − 1)2
− 6(a2 − 3)x2

(a2 − 1)2
+

15(a2 − 3)

(a2 − 3)x2 + 2a2

− 30(a2 − 3)2x2

((a2 − 3)x2 + 2a2)2

)
. (50)

For this QES potential we know explicitly the wavefunctions of the ground and the third excited
states

ψ−
0 (x) = C0((a

2 − 3)x2 + 2a2)5/4 exp

(−(a2 − 3)x4 + 2(a4 − 6a2 + 3)x2

12(a2 − 1)2

)
(51)

ψ−
ε (x) = Cε

x(x2 − a2)

((a2 − 3)x2 + 2a2)1/4
exp

(−(a2 − 3)x4 + 2(a4 − 6a2 + 3)x2

12(a2 − 1)2

)
. (52)

Note that at a2 = 3 this potential becomes exactly solvable and corresponds to the harmonic
oscillator.

5. Conclusions

We propose the SUSY method for constructing the QES potentials with arbitrary two known
energy levels and corresponding wavefunctions. This is an extension of our SUSY method
proposed in [17, 21] where QES potentials with the ground and first excited states were
obtained. In the proposed method the function W+(x) plays the role of a generating function.
Choosing different functionsW+(x)we obtain different QES potentialsV−(x). The two known
wavefunctionsψ−

0 (x) andψ−
ε (x) correspond to the eigenstates with zero energy and energy ε,

respectively. The state numbers of these wavefunctions depend on the properties of function
W+(x) as described in the cases 1, 2a, 2b which is summarized in the general case in section 3.
In section 4 we consider the explicit examples of QES potentials with the rational generating
function W+(x). These examples yield some new one-parametric QES potentials. At some
special values of parameters these potentials become exactly solvable and correspond to the
harmonic oscillator.

We can consider various new generating functionsW+(x) and obtain new QES potentials.
One of the interesting possibilities is to consider the periodic functions W+(x) which lead to
the periodic QES potentials. This problem will be the subject of a separate paper.
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